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ABSTRACT: Consistent long-term time-series information derived from satellite imagery is especially important in the fields 

of vegetation-related research. This ensures that phases of vegetative growth or changes can be adequately captured for various 

agricultural or environmental applications, such as species identification, yield predictions, and biomass management. 

However, commonly used optical satellite data, like the Landsat and Sentinel-2, are susceptible to contamination by the 

presence of clouds, aerosols, and other noise sources. Derived time-series data under these conditions may be temporally 

inconsistent due to invalid or missing temporal points, thereby reducing the effectiveness of high temporal resolutions boasted 

by these readily available remote sensing data catalogues. To overcome these limitations, we adapted the temporal smoothing 

concept of incorporating temporal sliding windows and generation of weighted regression lines along time-series information, 

and proposed three different reconstruction methods: the Local-Local reconstruction centers temporal windows on existing 

temporal points, and reconstruct values in-situ; Interval-Local creates temporal windows at fixed intervals, and recalculates 

values of existing points; Interval-Interval creates window intervals, but recreates temporal points at newly-defined interval 

sections. 

 

The time-series reconstruction methods are implemented on the Google Earth Engine (GEE). GEE provides a huge database 

for accessing updated satellite imagery, and a cloud platform to process and compute huge volumes of satellite data. The 

different reconstruction methods are applied in the classification of Mumbai City’s vegetation classes using Sentinel-2 Level-

2A imagery. TripleSat high-resolution optical imagery is used to identify different forms of vegetation parcels for verification 

purposes.  

 

The effectiveness of each method are evaluated based on their performance in accurately reconstructing time-series patterns 

and identifying characteristics of the associated vegetation type within the study area. While the L-L method appears to be 

the most computationally efficient on the GEE platform, and is capable of preserving the temporal integrity of the input 

Sentinel satellite series data; the I-I method, in reconstructing temporal patterns with more regular intervals, resolves temporal 

inconsistency issues due to missing data points. The regular sampling and recalibration of time-series data points at intervals 

allow for a more realistic reconstruction of the temporal patterns that may not have been present in less consistent time-series 

datasets. This allows for reconstructed time-series information to be better optimized for, and serve as a stronger foundation 

in future vegetation or biophysical studies, where complex and consistent temporal information will be essential and 

appreciated. 

 

 

1. INTRODUCTION 

 

Consistent time-series information derived from remotely sensed satellite imagery products have been a staple input into the 

studies of the Earth’s myriad biophysical surfaces. Temporal patterns and variations of spectral reflectance provided by optical 

satellites such as the Sentinel-2 and the Landsat constellations have assisted researchers in the identification, differentiations, 

and characterizations of the Earth’s land cover types.  

 

However, optical satellite imagery is susceptible to numerous problematic interferences, such as clouds and aerosol 

contamination obscuring optical observations; or instrumental calibrations or failures causing derived time-series information 

to be temporally and spatially incomplete (Goward et al, 1991). Missing information affects accuracy of their temporal 

characteristics, and limits the range of their applicability. It is essential to address this phenomenon, to improve time-series 

data’s applications towards remote sensing studies. 
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Studies have categorized methodologies towards reconstructing these missing information of values from remote sensing 

products into three main categories: spatial-based, spectral-based, and temporal-based methods. Spatial-based methods are 

some of the commonly used approaches, involving correlating missing data with locally available pixels, and applying spatial 

correlation algorithms to restore the missing pixels. Zhang et al (2007) adopted the kriging geostatistical approach to resolve 

the SLC strip error in the Landsat 7 ETM product, while Xu et al (2015) re-computed missing MODIS NDVI data using the 

linear interpolation algorithm. Spatial-based approaches often carry an inherent assumption that the missing pixels, and those 

that are used in the interpolation process, share similar geographical and thus spectral structures (Guillemot & Le Meur, 2014).  
 

Spectral-based approaches involve the reconstruction of a single spectral band by correlating with complementary spectral 

bands within similar satellite products. This solution is based on the assumption that the missing region is geographically 

different in the various spectral bands (Shen et al, 2015), and the spectral characteristics can be adequately captured by other 

bands. Multiple studies have been done to retrieve the faulty Aqua MODIS band 6 that had arisen due to defective detectors, 

by studying its relationship with both the Aqua band 7, and the Terra MODIS spectral bands (Wang et al, 2006). 

 

Temporal-based methods, on the other hand, derive values for missing pixels from the temporal spectrum, by extracting 

relevant information from other satellite imagery acquired at the same region, but at different time periods. Missing data due 

to cloud cover, for example, may affect regions too large for spatial interpolations to be reliable. It can also affect spectral 

information collected across most, if not all, spectral band wavelengths. However, the short-term interference on data 

collection caused by such atmospheric conditions can usually be mitigated by extending into multi-temporal datasets, whereby 

spectral information of a single missing pixel can be interpolated from available data points within temporal windows centered 

around the missing temporal point. Shen et al (2015) pointed out that temporal-based approaches are not suitable in retrieving 

spectral changes caused by abrupt geographical transformations, as temporal methods cannot reintroduce new or non-existing 

patterns not present in the time series. However, they are adequate in capturing and reconstructing the spectral characteristics 

of most geographical features with suitable time intervals being considered.  

 

Common temporal-based methods include fitting algorithmic functions such as the Harmonic Analysis of Time Series 

(HANTS) into time series data (Jakubauskas et al, 2001; Zhou et al, 2015); temporal filter applications, such as the Savitzky-

Golay filter (Chen et al, 2004; Zhou et al, 2016); reconstruction via deep-learning models (Das & Ghosh, 2017); and temporal 

interpolation methods (Julien & Sobrino, 2010). Function fitting approaches such as the HANTS require the prior assumption 

that time series information already adheres to certain temporal patterns, which may not be the case in most natural 

environmental conditions. Deep-learning approaches, on the other hand, often require huge amounts of input data and 

computational capabilities, and face issues such as resolution inconsistencies. A weighted reconstruction method was 

proposed by many scholars to counteract the contamination of remote sensing-derived signals by atmospheric conditions 

during the interpolating or filtering processes (Swets et al, 1999). 

 

This paper proposes three different time series reconstruction methods, incorporating concepts of temporal interpolation, 

filtering, and weighted regressions. Two parameters are differentiated between the methods: the nature of moving temporal 

windows, and the temporal intervals of the reconstructed time series. These methods are implemented on the Google Earth 

Engine (GEE) platform. A vegetation classification case study in Mumbai City during the Rabi season is used to evaluate the 

proposed methods. The Normalized Difference Vegetation Index (NDVI), a commonly-used remote sensing indicator, is used 

in this case study as the target for reconstruction. Sentinel-2 optical imagery datasets are used as the primary time series data 

for this paper, and a high-resolution imagery source, TripleSat, is used for ground-truth validation purposes.  

 

The remaining sections of the paper are as structured: Section 2 describes the study area, datasets, and platform used in this 

paper. Section 3 details the methodologies of the three proposed reconstruction approaches, parameters used, and the 

implementation processes. Section 4 covers the results and discussions of the classification and time series reconstruction 

results using the different methods. Section 5 concludes the paper by reviewing the advantages and disadvantages of the 

proposed methods, in both the contexts of the case study, and other real world applications. 
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2. STUDY AREA & DATASETS 
 

2.1. Study Area 

 

Mumbai City, a major urban district in Maharashtra, India, was selected as the test case study area in this paper to carry out 

vegetation type classification (Figure 1). Mumbai City serves as the state capital, and many different forms of vegetative land 

cover types can be found in the area. Outside of urban vegetation such as parks and open grasslands, the city also boasts areas 

of cultivated croplands, pastures, and fruit plantations. Forests can commonly be found within the Sanjay Gandhi National 

Park; and mangroves are very common in the region as Mumbai City as a result of land reclamation. 

 

Most of the Indian continent, especially Mumbai City, experiences consistent cloud cover throughout the year, during both 

dry and wet seasons. As a result, most optical satellite imagery data of the region suffers from a certain degree of cloud 

contamination. Figure 2 depicts the extent of missing temporal information as a result of cloud cover during Mumbai City’s 

2019-2020 Rabi season. In order to properly observe vegetation patterns and changes within the city, there is a need to properly 

fill in the data gaps in between the temporal datasets to provide consistent optical remote sensing observations. 

 

 
Figure 1. Location of the study region in Maharashtra, India. 

 
Figure 2. Extent of cloud contamination and affected time series in Mumbai City.  
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2.2. Datasets 
 

Two sets of optical satellite imagery data are employed in this case study: Sentinel-2 and TripleSat constellations.  

 

The Copernicus Sentinel-2 Level 2A products provide optical satellite imagery that are highly suitable for time series related 

remote sensing studies. The Sentinel-2 imagery boasts a spatial resolution of 10 meters; contains multiple spectral bands along 

the red edges and infrared red electromagnetic spectrum, which are highly sensitive to vegetation. Also, the Sentinel-2 has a 

global revisit rate of 5 to 7 days across its dual identical satellites, allowing frequent temporal data to be collected, and provide 

greater flexibility in selecting temporal filtering windows and intervals during reconstruction processes.  NDVI reconstruction 

is chosen as the main focus for the subsequent methodologies, due to its relevance in most vegetation studies. 

 

The high-resolution TripleSat satellite constellation is used as the verification dataset, due to it being capable of providing 

quality images with spatial resolutions up to 0.8 meters. Two TripleSat images are obtained for the study region, in the months 

of January and April 2020. These two images provide information on the vegetation conditions during the early and late stages 

of the dry Rabi season, and are suitable as visual verification datasets for the vegetation classification results. 

 

2.3. Google Earth Engine 

 

The GEE platform, on which the proposed methods are developed on, is a cloud-based platform that is easily accessible on 

various browsers and computer systems. GEE provides a Javascript/Python interface that allows users to both gain access to 

huge volumes of analysis-ready remote sensing datasets, and also provide high-performance parallel computing capabilities 

to carry out additional processing and applications (Gorelick et al, 2017). 

 

As of date, the GEE platform provides access to historical and updated Sentinel-2 pre-processed imagery. GEE’s server-side 

cloud computing capabilities allow for huge temporal datasets of very specific geographical extents to be easily extracted and 

compiled, in the case of Mumbai City that spans two different Sentinel-2 tiles. GEE also computes algorithms and calculations 

on its own server, before displaying client-side, reducing the computational and graphical requirements on the user end, 

especially for the proposed methods that involve iterative sliding windows and regression calculations across multiple 

temporal images. 

 

 

3. METHODOLOGY 

 

3.1. Parameters 

 

The general methodology revolves around the reconstruction of temporal data by generating weighted linear regression lines 

within moving windows along the input time series data, resulting in a group of regression lines and values associated with 

each predetermined temporal point (Figure 3). 

Two different parameters constituting the reconstruction methods are proposed. The first parameter, the window shift, 

indicates how the temporal window used to select temporal points for interpolation shifts along the time series. The temporal 

window (yellow rectangle) can be either centered around local existing points (in blue), or alongside fixed user-defined 

intervals. The results are dependent on the availability and proximity of existing data points: centering around existing data 

points generates regressions and corresponding reconstructed values tailored to these exact points; however, in time series 

with irregularly spaced or sparse temporal points, the temporal windows and interpolations generated tend to become uneven 

and unequal across the entire time series. 

 

The second parameter, the value reconstruction, refers to the temporal location of the value(s) in the reconstructed time series, 

which can either be a replacement of the existing local values, or at user-defined temporal intervals. Similar to the concept of 

the temporal windows, reconstructing time series at local temporal points preserve the temporal integrity of the underlying 

time series data, such as the standard twelve-day revisit rates of Landsat satellites; on the other hand, constructing new values 

from existing temporal data at user-defined intervals allow a greater control over the temporal structure of the reconstructed 

time series. 
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3.2. Reconstruction Approaches 

 

Three different approaches are proposed in this paper: the Local-Local (L-L) reconstruction, the Interval-Local (I-L) 

reconstruction, and the Interval-Interval (I-I) reconstruction methods.  

 

The first approach, the L-L reconstruction method, adopts local temporal windows and value reconstruction at individual 

existing local data points (Figure 4). A temporal window is constructed around each existing temporal point, and linear 

regression performed using all points within each window. The final value of the point is derived from the final regression 

line within the window, and replaces either the existing or empty value of the point. The L-L approach serves as a foundation 

method for the subsequent methods, due to its simplicity. 

 

The second approach, the Interval-Local (I-L) reconstruction method, utilizes temporal windows at user-defined intervals, 

while maintaining value reconstruction at individual existing local data points (Figure 5). 

 

Unlike the first approach, the temporal windows are centered around regular intervals (in red) along the time series. A new 

value is derived from the regression line calculated within each window. A new value is thus associated with each individual 

point, and this process continues as the temporal window moves down each interval along the time series. The result is that 

each existing point would have a family of regression lines and corresponding values associated with it. Cloud and other 

atmospheric influences have the tendency to reduce remote sensing data and associated vegetation indices such as the NDVI 

(Julien & Sobrino, 2010; Cao et al, 2018) A weighted average towards peak values for each point is proposed, to reduce the 

impact of these data interferences (Swets et al, 1999). 

 

Lastly, the third approach, the Interval-Interval (I-I) reconstruction method, deploys user-defined intervals in both the shifting 

of temporal windows, and also in the construction of new values during the time series reconstruction process (Figure 6). 

Regular intervals (in red) are first constructed across the entire time series. At each interval, the existing temporal points are 

used in the linear regression calculations. However, unlike the previous two approaches, the corresponding values are instead 

derived for the interval points, rather than the existing local points. As the temporal windows slide down along the intervals, 

each interval point receives new regression values, and these values are similarly averaged with a weighted approach to 

produce a reconstructed time series at user-defined, regular temporal intervals. 

 

3.3. Implementation 

 

The three methods are implemented on GEE web-based Javascript Code Editor, to employ the data accessibility, and 

computational capability of the platform. 190 pre-processed Sentinel-2 images obtained across 47 unique dates within the 

Rabi season (between November 2019 to May 2020) are selected from the GEE catalog; of which, 21 (11%) of these images 

have cloud percentages over 50%, and an additional 25 images (17%) experienced more than 20% cloud cover. Each method 

is implemented individually on this temporal dataset. For the reconstruction approaches, both the temporal windows and 

intervals are set at 10-day to optimize the advantages of Sentinel-2’s high revisit rate. 

 

Three main land cover types are identified. The Tree class is defined as the highly vegetated regions in the study area, and 

covers forests and wetland mangroves in Mumbai City. The Grassland class refers to the lightly vegetated land covers, such 

as the grazing pastures, shrubland, and croplands. Due to the time period chosen for this paper, the cropland class is considered 

under the Grassland category due to low agricultural intensities during the selected study period. Lastly, the Others class 

covers regions with little to no vegetation activity, primarily the urban and bare land regions.  

 

Figure 7 summarizes the workflow for Mumbai City’s vegetation classification. A simple threshold classification method is 

chosen, using a simple NDVI vegetation ratio. An NDVI value larger than 0.3 is selected as the threshold for this paper. The 

vegetation ratio calculates the ratio of NDVI values larger than the threshold to all available NDVI values within a single time 

series pattern for each temporal point. The value of the vegetation ratio reflects the percentage of input satellite imagery 

agreeing that the specific point is a vegetated pixel. A maximum NDVI value threshold is used to further differentiate between 

tree regions and grasslands with high vegetation temporal intensity but much lower maximum vegetation growth.  
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Figure 3. Illustration of moving temporal windows and associated values for each individual point. 

 

 
Figure 4. Illustration of a Local-Local reconstruction approach. 

 

 
Figure 5. Illustration of an Interval-Local reconstruction approach. 

 

 
Figure 6. Illustration of an Interval-Interval reconstruction approach. 
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Table 1. Classification accuracy results using the original and reconstructed time series datasets. 

 Original Local-Local Interval-Local Interval-Interval 

Accuracy (%) 71.3 87.1 86.0 86.4 

 

4. RESULTS & DISCUSSION 

 

Figure 8 shows some of the results of the classification using reconstructed Sentinel-2 time series datasets, and Table 1 shows 

the classification accuracies for each classification approach. Four sample regions are selected from the study region, and the 

results of each time series reconstruction method are compared against each other, and against the original time series pattern 

(Figure 9). 

 

Time series patterns for data before February 2020 in Figure 9(A) demonstrates the consistency of time series reconstruction 

of the proposed methods against a well-defined and complete time series data: all three reconstructed time series follow the 

original temporal pattern within huge variations. 
 

Differences between each method occur when the original time series patterns become irregular, either due to missing values, 

or anomalies. In Figures 9(B) and 9(C), the absence of a weighted average using multiple regressions with neighboring values 

(in the L-L method highlighted in red) cause abnormal values from the original time series to drag down the reconstructed 

values, resulting in an abnormal dip in signal during January 2020. The application of weighted averages towards higher 

values using multiple regressions across different temporal windows (in the I-L and I-I methods) allow for reconstructed time 

series to avoid abnormal dips in the original time series, and maintain a more consistent temporal pattern. 

 

Extreme variations seen in the original time series in Figure 9(D) cause the L-L’s method straightforward reconstruction 

method to return a nearly flat time series pattern that ignores potentially true land cover variations on the ground. Multiple 

regression averages by the I-L and I-I methods produce a smoother transition between these large value changes, producing 

eventual time series patterns that reflect possible large signal variations, while concurrently reducing extremities. 

 

Between the I-L and I-I methods, while both reconstruction methods are able to preserve temporal patterns better than the L-

L counterpart due to the weighted average approach, Figure 9 shows that the I-I method generally produces smoother time 

series patterns as compared to the I-L method. Compared to the inconsistency of the input time series intervals, such as the 

Sentinel-2’s 5 to 7 day revisit rate while assuming no imagery issues, I-I method’s reconstructed 10-day interval approach 

produces a resultant time series with strict regular temporal pacing, and is not bounded by the temporal variability of the input 

time series patterns and intervals. Introducing reconstructed values along regular temporal intervals using the I-I approach 

produces more consistent patterns as large temporal gaps between the input time series can be accounted for accurately by 

performing regressions and weighted averages at these specific temporal points. Working with time series data with regular 

intervals is beneficial for time-sensitive remote sensing studies, such as crop monitoring or phenological studies. Providing 

insights on values at required intervals or specific temporal stages are important when monitoring vegetative growth, and the 

I-I method provides the flexibility in the reconstructed time series.  

  
Figure 7. Simplified classification workflow using reconstructed time series information. 
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C D 

 
Figure 8. Classification results using (A) original time series, (B) Local-Local approach, (C) Interval-Local approach, and 

(D) Interval-Interval approach. 
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5. CONCLUSION & FUTURE DIRECTIONS 

 

This paper proposed a series of time series reconstruction methodologies utilizing temporal interpolations, filtering, and 

weighted regression concepts, by introducing two different parameters: the nature of temporal window shifts, and the temporal 

patterns of the reconstructed values. All three methods demonstrated the ability to efficiently restore and reconstruct 

incomplete time series patterns to different extents, improving the accuracies of the time series data used to carry out 

classifications on natural land covers over periods of time, as shown in the case study of Mumbai City introduced in the paper. 

The concept of weighted averages to counteract the atmospheric dampening effects on NDVI and other vegetation signals are 

also investigated with these methods. The I-L and I-I methods’ of incorporating weighted averages of multiple regression 

lines from interval temporal windows serve as an effective value filter against local abnormal values. Interpolation results 

from surrounding valid pixels, and an algorithmic weight towards peak values are observed to be effective in preserving both 

vegetation pixels, and signal variations. The temporal nature of the reconstructed time series is also investigated. While 

preserving the temporal integrity of the existing time series patterns may be important for certain research where original 

revisit rates of specific remote sensing products are preferred, in other cases a more consistent temporal interval will produce 

smoother and more continuous patterns more commonly observed in natural land covers like vegetation. 

A 

 

 

B 

 

 

C 

 

 

D 

 

 
Figure 9. Time series pattern results of different reconstruction methods against original time series. 
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The current approach is still preliminary, and more can be done to further improve methodologies on different land cover 

types. The Mumbai City’s mangrove forests, for example, see best classification results using the L-L approach instead, due 

to the shorter timeframe in this case study bolstering the vegetation ratio adopted. Under more extensive research and 

timeframes considered, the other approaches can be optimized to cater to characteristics of more unique land covers. By 

drawing focus on specific steps in existing time series reconstruction methodologies, such as the nature of window shifts and 

resultant temporal intervals, this paper hopes to serve as a stepping stone for future scholarly work and practical applications, 

to better improve time series reconstruction of remote sensing products in the advent of accessible big data platforms. 
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